Al CERTSs® CERTS"

+
Al+ Game Design Agent™ (1 Day) G’E‘Jeoesign

Agent™

Program Detailed Curriculum

Executive Summary

The Al+ Game Design Agent certification equips learners with essential skills for integrating artificial
intelligence into game design. It focuses on leveraging Al to enhance game mechanics, player experience,
and procedural content generation. This certification covers Al concepts, including machine learning
algorithms, pathfinding, and behavior modeling, and demonstrates how these technologies can be
applied in the development of engaging and dynamic games. Ideal for game designers, developers, and Al
enthusiasts, this certification provides practical knowledge to create smarter, more adaptive gaming
environments that improve both player interaction and game longevity.

Prerequisites for the Al+ Game Design AgentCourse:
Basic Programming Knowledge: Familiarity with coding concepts and languages.
Game Design Fundamentals: Understanding of core game mechanics and structure.
Mathematics and Algorithms: Strong grasp of logic and problem-solving technigues.
Artificial Intelligence Basics: Introductory knowledge of Al principles and models.

Creative Thinking: Ability to envision dynamic and interactive game elements.

Understanding Al Agents

1.1 What are Al Agents?

Al agents are autonomous entities that perceive their environment, process information, and act to achieve goals. They
operate independently and adapt based on environmental changes and learned experiences.

1.2 Agent Architectures and Environments

This section explores Al agent architectures, including reactive, deliberative, and hybrid systems. It also delves into the
role of environments, where agents interact and make decisions, influencing their behavior.

1.3 Decision Making and Behavior Basics

Al decision-making involves evaluating alternatives to select the best action. This section covers decision models like
rule-based, utility-based, and goal-driven agents, as well as their application in game design.



1.4 Introduction to Multi-Agent Systems

Multi-agent systems (MAS) are composed of interacting agents aiming to achieve goals through cooperation or
competition. This section highlights the types of interactions, including coordination, commmunication, and competition
between agents.

1.5 Case Study: Pac-Man Ghost Al

The case study examines how the simple yet effective reactive Al of Pac-Man’s ghosts creates engaging gameplay. It
focuses on how each ghost’'s behavior design adds strategic depth to the game.

1.6 Hands On: Build a Basic Reactive Al Agent Navigating a Simple Environment Using Pygame

Participants will create a basic reactive Al agent navigating a 2D environment using Pygame. The exercise emphasizes
implementing simple rule-based logic for real-time decision-making without memory.

Introduction to Al Game Agent

2.1 What is an Al Game Agent?

Al GCame Agents autonomously perform actions in games, simulating human-like behavior. They perceive
environments, make decisions, and adapt, enhancing gameplay realism and player engagement.

2.2 Key Components of Al Game Agent

Al game agents consist of perception, decision-making, action execution, and learning modules, allowing NPCs to
adapt, interact, and engage with the game world in meaningful ways.

2.3 Agent Architectures

Agent architectures, including reactive, deliberative, and hybrid models, define how Al agents process sensory data,
plan actions, and adapt to changing environments. Each architecture impacts decision-making speed, complexity, and
adaptability in games.

2.4 Al Game Agent Behaviors
Al behaviors such as patrolling, chasing, hiding, and attacking enable NPCs to respond to dynamic game

environments. These actions, driven by environmental cues and decision-making logic, enhance gameplay immersion
and challenge

2.5 Case Study: Racing Games (e.g., Mario Kart, Forza Horizon)
Explores how racing games like Forza Horizon and Mario Kart use Al agents to enhance competition, utilizing real-time
environment adaptation and reinforcement learning for smarter NPC behaviors.

2.6 Hands-On: Creating a Simple Box Movement Game in Playcanvas

In this hands-on exercise, users build a simple 2D game in Playcanvas, gaining experience in implementing basic
movement mechanics, handling user inputs, and understanding game interactivity for engaging gameplay



Reinforcement Learning in Game Design

3.1 Basics of Reinforcement Learning

Explains key RL concepts, such as agents, environments, states, actions, rewards, and policies. Highlights how
agents learn through trial and error to optimize decision-making and maximize cumulative rewards.

3.2 Key Algorithms: Q-Learning and SARSA

Introduces Q-Learning and SARSA algorithms, explaining how they enable agents to learn optimal policies
through trial and error. Q-learning is off-policy, learning the best actions regardless of behavior, while SARSA is
on-policy

3.3 Applying RL to Game Agents

Describes how RL can be applied to train game agents, enabling them to autonomously improve decision-
making and adapt to dynamic environments, creating smarter, more interactive game Al.

3.4 Challenges and Solutions in Game-based RL

Explores challenges like balancing exploration and exploitation, managing sparse rewards, and handling large
state spaces in RL for games. Offers solutions like reward shaping and deep Q-networks.

3.5 Case Study: AlphaZero in Games: Mastering Chess, Shogi, and Go through Self-Play and
Reinforcement Learning

Analyzes AlphaZero's innovative use of reinforcement learning to master Chess, Go, and Shogi through self-play.
It combines deep neural networks and Monte Carlo Tree Search, achieving superhuman performance without
human input.

3.6 Hands On: Train a simple RL agent in OpenAl Gym environment

Provides hands-on experience with reinforcement learning by guiding users through training an agent in
OpenAl Gym. The agent learns to balance a pole on a moving cart using Q-learning in the CartPole-vl
environment.



Al for NPCs and Pathfinding

4.1 Understanding NPCs as Al Agents

This section introduces NPCs as Al-driven entities within games, exploring their decision-making, role in
enhancing storylines, and interaction with the environment, contributing to dynamic gameplay and immersive
player experiences.

4.2 Simple Al Techniques for NPCs

Explains basic Al methods like Finite State Machines (FSM) and Behavior Trees (BT) to simulate NPC behavior,
focusing on decision-making processes for actions such as patrolling, attacking, and fleeing in games.

4.3 Pathfinding Algorithms

Covers pathfinding algorithms like A* Dijkstra’'s, and BFS. These algorithms enable NPCs to find optimal routes
in dynamic environments, avoiding obstacles and ensuring smooth, efficient navigation through the game
world.

4.4 Obstacle Avoidance and Movement Optimization

Explores techniques for obstacle detection and avoidance, ensuring NPCs navigate around physical and
dynamic barriers, while optimizing movement for smooth and efficient interactions, improving realism and
player immersion in games.

4.5 Case Study

This case study examines how Halo uses Finite State Machines (FSM) and A* pathfinding algorithms to create
dynamic, strategic, and immersive enemy behaviors, enhancing combat scenarios and player interaction in real-
time.

4.6 Hands-On

In this hands-on exercise, you will create a basic NPC Al agent using A* pathfinding for movement and a Finite
State Machine (FSM) for decision-making, enabling the NPC to chase or patrol effectively.



Al for Strategic Decision-Making

5.1 Decision Trees and Minimax for Game Al
Decision trees and the Minimax algorithm provide fundamental methods for strategic Al decision-making.

Decision trees break down decisions sequentially, while Minimax evaluates all possible moves in two-player
games to choose optimal strategies, ensuring competitive gameplay.

5.2 Monte Carlo Tree Search (MCTS) for Al Agent

Monte Carlo Tree Search (MCTS) is used for Al decision-making in complex games. It combines exploration and
exploitation through random sampling, simulating numerous future game states to evaluate and determine the
best possible move for agents.

5.3 Utility-Based Decision Making for Game Al

Utility-based decision making empowers Al agents to evaluate various actions based on calculated utility scores.
This approach allows for more dynamic and context-sensitive behavior, with actions selected based on their
effectiveness in a given situation, enhancing gameplay realism.

5.4 Al in Real-Time Strategy (RTS) Games

In RTS games, Al must handle real-time decisions, balancing resource management, unit control, and strategic
planning. It adapts to evolving player tactics, ensuring that NPC factions create challenging and dynamic
gameplay by responding to changing battlefield conditions.

5.5 Case Study: StarCraft Il Al by DeepMind

This case study explores DeepMind'’s AlphaStar, which uses Monte Carlo Tree Search and reinforcement learning
to master strategic decision-making in StarCraft Il, competing successfully against professional human players.

5.6 Hands-On: Implement a Basic MCTS Agent for Tic-Tac-Toe Using Pygame

This hands-on exercise guides you through building an MCTS-powered Tic-Tac-Toe agent using Pygame. You'll
implement Monte Carlo Tree Search to evaluate optimal moves and enhance the Al's decision-making
capabilities.



Al Game Agent in 3D Virtual Environments

6.1 3D Environment Representation and Challenges for Al Agents

Al agents must process complex 3D environments, overcoming challenges like scale, dynamic changes, sensor
noise, and occlusion to navigate effectively, requiring efficient spatial models and real-time adaptability.

6.2 Navigation Mesh Generation for Al Agents in 3D
NavMeshes simplify pathfinding for Al agents in 3D spaces, enabling navigation through complex terrains.

Different techniques, from manual to dynamic mesh generation, help Al agents avoid obstacles and find optimal
paths.

6.3 Complex Agent Behaviors in 3D Worlds
Advanced agent behaviors in 3D environments involve intelligent decision-making, interaction with the

surroundings, and collaboration with other agents, providing realistic, adaptive responses that enhance player
experience and gameplay immersion.

6.4 Case Study: The Last of Us

The Last of Us uses Al agents with integrated navigation meshes and animation systems to navigate complex 3D
environments, adapting to player actions, coordinating tactics, and enhancing realistic, immersive gameplay.

6.5 Hands-On: Develop a 3D Al Agent with Navigation and Interaction in Unity Using NavMesh
and C#

In this hands-on exercise, design a 3D Al agent with autonomous navigation and interaction capabilities,

demonstrating Al behaviors like patrolling, obstacle avoidance, and target tracking in a controlled, interactive
game environment.

Future Trends in Al Game Design

7.1 Current and Future Al Trends

Explore the evolving role of Al in game design, highlighting current advancements in machine
learning, procedural generation, and adaptive gameplay, and envisioning future innovations in Al-driven gaming
experiences.



7.2 The Future of Generalist Al in Gaming

Examine how general-purpose Al models will shape the future of gaming by enabling dynamic and multi-
faceted gameplay, from adaptive narratives to evolving NPC behaviors, enhancing player immersion.

7.3 Case Study: No Man’s Sky Procedural Generation

Investigate the use of procedural content generation in No Man’s Sky, showcasing how algorithmic design
powers infinite worlds and enriches player engagement, fostering exploration and replayability.

Capstone Project

8.1 Task Description

Design and build a basic Al game agent, applying Al techniques to create an interactive agent within a 2D or 3D
game environment using frameworks like Unity3D, Playcanvas, or Pygame.

8.2 Practical Implementation

Set up game engines, initialize environments, and develop the Al agent's behaviors. Utilize tools like pathfinding,
obstacle avoidance, and reinforcement learning to program the agent’s interactions and decision-making.

8.3 Testing and Debugging

Test the Al agent’s behavior in real-time, analyze performance, validate behaviors, and optimize decision-making
processes. Iterate through adjustments to improve agent performance and game dynamics based on testing
outcomes.

8.4 Hands-On

Apply learned concepts to create and test a functional Al agent within a game environment. Engage in practical
development, testing, and debugging, refining agent behaviors and decision-making through iterative
improvements.

AICERTs Date Issued: 20/08/2025

Al+ Game Design Agent Detailed Version: 1.1

Curriculum



